Empirical Mode Decomposition-k Nearest Neighbor Models for Wind Speed Forecasting
نویسندگان
چکیده
Hybrid model is a popular forecasting model in renewable energy related forecasting applications. Wind speed forecasting, as a common application, requires fast and accurate forecasting models. This paper introduces an Empirical Mode Decomposition (EMD) followed by a k Nearest Neighbor (kNN) hybrid model for wind speed forecasting. Two configurations of EMD-kNN are discussed in details: an EMD-kNN-P that applies kNN on each decomposed intrinsic mode function (IMF) and residue for separate modelling and forecasting followed by summation and an EMD-kNN-M that forms a feature vector set from all IMFs and residue followed by a single kNN modelling and forecasting. These two configurations are compared with the persistent model and the conventional kNN model on a wind speed time series dataset from Singapore. The results show that the two EMD-kNN hybrid models have good performance for longer term forecasting and EMD-kNN-M has better performance than EMD-kNN-P for shorter term forecasting.
منابع مشابه
A Novel Strategy for Wind Speed Prediction in Wind Farm
The empirical mode decomposition (EMD) is well known for predicting wind speed.However, but the joint application of relevance vector machine (RVM) and empirical mode decomposition in wind speed forecasting is seldom found in the field. This paper proposes a relevance vector machine model based on empirical mode decomposition to predict the wind speed. Before the wind speed forecasting with RVM...
متن کاملEmpirical Mode Decomposition and k-Nearest Embedding Vectors for Timely Analyses of Antibiotic Resistance Trends
BACKGROUND Antibiotic resistance is a major worldwide public health concern. In clinical settings, timely antibiotic resistance information is key for care providers as it allows appropriate targeted treatment or improved empirical treatment when the specific results of the patient are not yet available. OBJECTIVE To improve antibiotic resistance trend analysis algorithms by building a novel,...
متن کاملHour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition
Operation of wind power generation in a large farm is quite challenging in a smart grid owing to uncertain weather conditions. Consequently, operators must accurately forecast wind speed/power in the dispatch center to carry out unit commitment, real power scheduling and economic dispatch. This work presents a novel method based on the integration of empirical mode decomposition (EMD) with arti...
متن کاملWind Speed Forecasting Based on EMD and GRNN Optimized by FOA
As a kind of clean and renewable energy, wind power is winning more and more attention across the world. Regarding wind power utilization, safety is a core concern and such concern has led to many studies on predicting wind speed. To obtain a more accurate prediction of the wind speed, this paper adopts a new hybrid forecasting model, combing empirical mode decomposition (EMD) and the general r...
متن کاملA Hybrid Approach for Short-Term Forecasting of Wind Speed
We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and a...
متن کامل